UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0652 PHYSICAL SCIENCE

0652/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0652	32
1	(a) 50	m/s;			[1]
	(b) acceleration/deceleration/slowing down; constant/steady referring to acceleration/deceleration (not at constant speed)/calculated value of acceleration/comes to rest;				
	(c) (i)		of gradient, $(a = (30 - 0)/(10 - 0))$; m/s ² ;		[2]
	(ii)		of F = ma = 1500 × 3.0 (e.c.f.) ; 00 N ;		[2]
	(iii)		tion of frictional force/air resistance; e from engine = accelerating force + frictional forc on;	e/work done aga	inst [2]
	gre (bo	ger gra eater a	adient/same mass (not accept shorter period of tim acceleration/deceleration; arks can be scored for a correct calculation of bo t)	•	[2] and
					[Total: 11]
2	(a) (i)	all fo bala	$0 + 2CO \rightarrow N2 + 2CO_2$ ormulae correct; nced; $+ CO \rightarrow N + CO_2 \text{ max 1}$		[2]
	(ii)	carb (mar gain	gen (monoxide) is reduced because it has lost oxyg on (monoxide) is oxidised because it has gained ox ks can be gained for correct reference to /oxidation states) ax if general explanation without reference to NO an	ygen ; electron loss	[2] and
	(iii)	(pero (pero (pero	two: centage) of nitrogen monoxide has decreased; centage) of nitrogen has increased; centage) of carbon monoxide has decreased; centage) of carbon dioxide has increased;		[max 2]
	(iv)	with (if th	on monoxide reacts with oxygen to form carbon dioxoxygen to form water; he carbon monoxide to carbon dioxide process is not be here)		[1]
	(b) (i)	zinc	anising means coating with zinc; more reactive than steel/iron; reacts not iron/sacrificial reaction;		[3]

Page 3	Mark Scheme: Teachers' version Syllabus	Paper
	IGCSE – October/November 2011 0652	32
(ii)	painted steel will rust if scratched or chipped but galvanised will not (rust) (both required, but allow the comment re zinc not reacting if included in	-
		[Total: 11
` ´ caı	band vibrates ; using air (molecules) to vibrate/forming a longitudinal/compression wair ;	/ave <u>in</u> [2
4.5 f = (all	or 5 waves number of waves or specified number of divisions; in 4 divs (accept 5 waves in 5 divs); 450 (Hz); ow rounding errors for answer) (use of only one wave – 2 max, raw a 0 Hz – 2 max)	[(answer
		[Total: {
(a) (i)	light provides <u>energy</u> ;	[
(ii)	reduction is gain of an electron/oxidation state goes down;	[
(iii)	$Ag^+ + e^- \rightarrow Ag$;	[:
(b) (i)	add potassium bromide solution to silver nitrate solution until no reaction; filter (to obtain ppt); wash <u>ppt</u> with distilled water; leave <u>ppt</u> to dry; keep in dark;	further [max 4
(ii)	$AgNO_3 = 170$ and $AgBr = 188$;	
()	number of moles = $\frac{5}{170}$ (accept $\frac{5}{188}$);	
	= 5.5 g ;	[3
		[Total: 10
(a) (i)	use of $I = V/R$ (= 6/48); = 0.125 A (0.13 A);	[2
(ii)	(e.c.f.) use of $R = V/I$ (= 4.5/0.125); = 36 Ω ;	[:
<i>(</i> 1.) 5	$\sim V/I = 3.0/0.125 = 24.0/discussion to \frac{1}{2} notantial difference leads to \frac{1}{2}$.D. [

(b)
$$R = V/I = 3.0/0.125 = 24 \Omega/discussion re ½ potential difference leads to ½ R; [1]$$

(c) (i) use of $1/R = 1/R_1 + 1/R_2 = 1/24 + 1/8 = 4/24$ (accept sum/product); $R = 24/4 = 6 \Omega$; [2] (must show R = 6 Ω)

Page 4		1	Mark Scheme: Teachers' version	Syllabus	Paper		
			IGCSE – October/November 2011	0652	32		
	(ii)	(6 +	24 =) 30 Ω ;		[1]		
	(iii)	(e.c.					
		potential difference = $0.2 \times 6 = 1.2 \text{ V}$;					
	(iv)	if					
		pote	ntial difference > 3, normal if potential difference = 3	3 ;	[1]		
					[Total: 11]		
6	(a) Ca						
	number of moles = $\frac{2.5}{100}$ or 0.025;						
	= 0	.6 dm	3;		[3]		
	(b) (i)		ium oxide is a base because it gains a proton/tl	ne oxide ion gai	ns a		
		proto hydr	on ; ochloric acid is an acid because it donates a proton	•	[2]		
		(max	x 1 if neither refers to specific reaction)				
	(ii)	-	hoteric ;				
		acid neut			[3]		
			·· ,				
					[Total: 8]		
7	(a) (i)	the r	needle of the voltmeter moves ;				
•	(ω) (ι)	then	goes back to zero ;				
		(do i	not allow if there is a residual current. e.g. needle fa	alls to zero)	[2]		
	(ii)		n the magnet moves the coil cuts/there is a <u>change</u> th induces an e.m.f./current ;	in magnetic flux			
		WITIC	m <u>induces</u> an e.m.r./current ,		[2]		
	(b) the	need	le of the voltmeter moves in the opposite direction;		[1]		
	(10)		с. п то п		[-]		
	(c) wave trace seen on the cathode ray oscilloscope;						
	cha	anging	g current produces changing field ;		[2]		
					[Total: 7]		
8	(a) (i)	nobl	e gases (do not accept inert, rare) ;		[1]		
	(ii)	boili	ng point increases/density increases/mass increas	es;			
			increasing atomic number/down group;		[2]		
	(iii)	unre	eactive (accept inert);		[1]		
	(iv)	anv	value between 4.5 and 9.9 kg/m³ ;		[1]		
	(14)	arry	Talas solution illo and olo ng/ill ;		ניז		

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0652	32

(b) (i) diagram showing 8 electrons in outer shell; 3 shells with 2 electrons in first shell and 8 in second shell; [2]

(ii) potassium, 1+ **OR** chloride, 1– ;; [2]

(iii) loses electrons ; two electrons are <u>lost</u> ; [2]

[Total: 11]

9 (a) (i) liquid turns to vapour/gas (<u>not</u> molecules); [1]

(ii) boiling: bubbles of vapour form in the liquid; evaporation: molecules leave the surface of the liquid;

OR

boiling occurs at fixed temperature; evaporation at a range of temperatures 1;

[max 2]

OR

boiling is a violent process (1 max);

(b) $15-25 \,^{\circ}\text{C}$; [1]

(c) molecules lose energy/slow down etc.; (not accept **molecules** lose **thermal** energy)
clear energy loss is loss in <u>kinetic</u> energy/energy is transferred to the surroundings/<u>hence</u> temperature falls; [2]

[Total: 6]